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Abstract—This paper summarizes some of the essential aspects of 
carrier transport in Silicon nanowire Cylindrical Gate-All-Around 
MOSFET. For this, Self consistent solution of the 2-D Schrodinger 
equation and the 3-D Poisson equation in cylindrical coordinate 
system, coupled with the drift-diffusion transport equation is 
discussed. The details of the discretization of these equations and 
overall steps used to obtain the drain current of the presented device 
are computed. Simulated drain current versus gate voltage 
characteristics have also been successfully examined and matched 
with the data available in the recent literature. Variation of the drain 
current as a function of the nanowire diameter and of the channel 
length and is examined. The device performances in terms of off-state 
current, threshold voltage and parasitic short-channel effects are 
also computed. It is observed that quantum-mechanical confinement 
is very important in cylindrical nanowires, which reduces the impact 
of parasitic short-channel effects. 
 
Keywords: Nanowire, Drift-Diffusion Transport, MOSFET, Short-
channel effects. 

1. INTRODUCTION 

Currently the Modeling and simulation of nanowire 
MOSFETs devices are experiencing a growing interest due to 
their unique capabilities: (i) it provides useful insights into 
device operation since all internal physical quantities that 
cannot be measured on real devices are available as outputs; 
(ii) the predictive capability of simulation studies makes 
possible the reduction of systematically experimental 
investigation of these new ultra-scaled devices; (iii) It offers 
the possibility to test hypothetical devices which have not yet 
been manufactured. Now a day’s computers are easily 
available resources, it (simulation) is becoming a prominent 
tool for the device physicist, not only for the device 
optimization, but also for important studies of several peculiar 
phenomenon in ultra-short channel devices (quantum 
confinement of charge carriers or short-channel electrostatic 
effects)[2, 3,7,9-14,18-20]. 

This study presents a theoretical study of electrostatics and 
electronic transport in Gate all around nanowire MOSFETs by 
quantum drift-diffusion numerical simulation. We discussed 

the operation of presented device using a 2-D/3-D 
Schrodinger/Poisson solver (MuGFET simulator). MuGFET 
also provides a lot of information and valuable physical 
insights (such as the 3-D profile of electrostatic potential, 
classical and quantum carrier densities in the channel, the 
energy levels and total inversion charge) used to investigate 
the influence of short-channel and quantum-mechanical 
effects [9, 11-12]. 

2. THEORETICAL BACKGROUND OF THE 
SIMULATION: 

This is based on the numerical solving of the Poisson-
Schrodinger equations coupled with the drift-diffusion 
equation [2,-8]. Here, the Poisson equation is solved on the 
entire 3-D structure [13] and to solve the Schrodinger equation 
device is divided into parallel vertical slices (y-z plane) [14]. 
In order to obtain the wave function, the quantum energy 
levels and the charge density, in each slice the 2-D 
Schrödinger equation is thoroughly discussed. To make easy 
calculations, in radially-symmetric nanowire, it is possible to 
reduce the size of the Poisson and Schrödinger equations. By 
expressing these equations in cylindrical coordinates and using 
the property of cylindrical symmetry of the structure, the 
Poisson equation reduces into a 2-D equation and the 
Schrödinger equation becomes 1-D. In this structure 
(Cylindrical nanowire MOSFETs), the Cartesian coordinates 
are transformed in cylindrical coordinates (for GAA 
structure), in such a way that the structure is symmetrical with 
respect to the coordinate θ. The Poisson equation is solved in 
two dimensions, on the 2-D mesh as θ is ignored. In the same 
way, the circular symmetry allows us to simplify the 
Schrödinger equation along the radial direction r (1-D mesh). 
Figure: 1(a) shows the 3-D architecture of the radially-
symmetric nanowire MOSFETs considered in the simulation. 
The device is symmetric with intrinsic thin silicon film and 
highly doped source and drain (NSD = 3×1020 /cm3). A midgap 
metal gates (Φm=4.61 eV) and a 1.05nm thick gate-oxide 
have been also taken. The gate and the drain biased are at VG    
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Table 1: Effective masses & N2D 

Material ml Mw mz nv N2D 

Si(001)/ (100) 0.190 

0.190 

0.916 

0.190 

0.916 

0.19 

0.916 

0.19 

0.19 

2 

2 

2 

1.587 

3.485 

3.485 

Si(100)/  (001) 0.19 

0.916 

0.553 

0.19 

0.315 

0.19 

4 

2 

5.416 

3.485 

 

 

Figure: 1 - MuGFET simulator (a quantum drift-diffusion 
simulator) for presented device & (b) simulated electrostatic 

potential along the y-direction at equilibrium condition (available 
at www.nanohub.org)  

and VD, and the source is at zero potential respectively.  

3. POISSON SOLVER 

The general Poisson equation is given by: 

 





xr
x
V

r
V

r
V ,

2

2

22

2

2

2









  

Here,  is the permittivity of material used. &   is the charge 
density, having value  nNq D   

By considering the azimuthal symmetry, this can be written 
as: 
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The solution, using finite difference scheme, of above 
equation can be written as [15]: 
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Here, i points along the x direction and j points along the r 
directions of the presented mesh. x r & are the mesh 
sizes along x and r axis. 

4. SCHRODINGER SOLVER: 
In this section we will sove the time independent Schrodinger 
wave equation with a spatially varying effective mass in 
cylindrical coordinate system. Which is as follows [ 16]: 
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Here, Veff(x)is the effective potential energy profile. i. e.  
Veff=VH + Vexc. VHis the Hartree self-consistent potential which 
is nothing but the solution of Poisson equation and Vexc is the 
exchane correlation potential. H0II is the parallel part of H0, 
and oH is the transverse part. 

For cylindrical symmetry. The solution of equation (3) can be 
written as 

     
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 ikxrxr exp1,,,    (4) 

Here, ....3,2,1 k  is the angular quantum number and 
put the value of   in equation (3), we get 

Schrodinger equation along the radial direction that is 
perpendicular to the x axis is: 
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The radial wavefunction  r  satisfies the one dimensional 
Schrodinger equation      rErrH mo  under the 
appropriate boundary conditions. Where En is the sub band 
energy &  r  is the corresponding wave function. Now by 
discretization method we will solve equation-5 for different 
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values of m. For each value of m, a distinct set of wave 
function and eigen value is obtained. And for all m, the 
obtained energy levels will be stored and arrange in ascending 
order from the lowest level to highest level. Similarly the 
wave function corresponding to each energy level is stored. 
And now the first lowest level is used to calculate the electron 
density. This process is executed for both levels. Thus the 
electron density (nr) is [17]: 
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Here, 2,1 rrg is the valley degeneracy and equal to 2 for 
unprimed energy level and 4 for primed level. nm is the 
electron density per unit length of mth subband, whose value 
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Here, EF is Quasi-Fermi energy, 2/1 is hemi Fermi-Dirac 
integral [10] and N1D is 1-D effective density of state (1-D 
DOS) having value   
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Where mD(r1,r2) is the density of state effective mass and is 
equal to ml (longitudinal effective mass) for unprimed energy 
level and mt (transverse effective mass) for primed energy 
level. Finally, the 1-D Schrodinger equation is solved for a 
vertical cut-line in each mesh point of the x axis. For each cut-
line in a given mesh-point i, the electron density n(r) is 
calculated using equation (6), and then it assigned to the mesh-
point point i; this makes possible to build step by step the total 
density n(x, r). This density gives a new potential V(x, r), and 
this new potential is again introduced in solving of the 
Schrodinger equation, which gives the new carrier density n(x, 
r), which in turn injected into Poisson's equation. This process 
is going on until the convergence is achieved. This is known 
as self-consistent method.  

5. EXPRESSION OF DRAIN CURRENT: 

After solving the Schrodinger and Poisson equations self-
consistently, the solutions of these equations are coupled with 
continuity equation. That is [10]: 

J = drift component + diffusion Component 

nqDnqJ nn    (9) 

Where n is the electron mobility, Dn is the diffusion 
coefficient, and n is the electron density. Poisson, Schrodinger 
and drift-diffusion equations are solved using a finite 
difference scheme The expression for jiF ,,  , using 
discretization of equation-9, is: 
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Table: 2- Parameters for simulating the presented device by 

MuGFET (Multigate Field Effect Transistor) simulator. 

Material/Band 
structure 

Electrons in 
channel 

Holes in 
channel 

Environment 
& Biasing 

Dielectri 
constant of 
channel- 11.7 
Dielectric 
constant of 
insulator- 4.8 
Band gap of 
channel 
material- 
1.12eV 
Electron 
affinity of 
channel 
material- 
4.05eV 
Gate contact 
work function- 
4.6eV 

Saturation 
velocity- 
1.07e+07cm/sec 
Minority life 
time- 500ns 
Mobility- 
1400cm2/Vs 
Vsat – 
1.07e+07cm/sec 

Light hole 
effective 
mass-0.16 
Hevy hole 
effective 
mass- 0.49 
DOS effective 
mass- 1.18 
Mobility- 
450cm2/Vs 
Vsat – 
8.3e+06cm/sec 

VG (initial)- 0V 
VG (final)- 1V 
VD(initial)- 0V 
VD(initial)- 
0.045 
Critical current 
for Vth–0.0001 
(A/um) 
Maxi no of 
Newton 
iterations- 1000. 
Tolerance for 
Newtons- 1e-
06. 
Temperature – 
300K. 

 

First we calculate  from equation-10, than using Poisson-
Schrodinger solver we calculate the carrier density (n). This 
computed charge density is then used to find a new potential 
profile, which is then again inserted into the equation for 
solving the continuity equation that gives new quasi-Fermi 
energy. This new quasi-Fermi level will be injected into the 
Schrodinger-Poisson and so on. The process continues until 
the convergence is achieved. The final values of the electron 
density, n(x,r), and the quasi- Fermi energy, ΦF(x,r), are used 
for calculating the drain current of the presented device. 

     rxrxnqrxJ Fnn ,,,     (11) 
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Figure: 2(c)-short channel effects (SCE) 
versus the nanowire diameter for short-

channel devices with L=D. 
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Figure: 2(b)-Variation of drain 
current with gate voltage for 
D=L=5nm, at VD=0.05V 
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Figure: 3(a) - Simulated ID-VG characteristics of presented device 
by Mu GFET simulator and  

(b) - plot of simulated transconductance as a function of drain 
voltage.  

6. RESULT AND DISSCUSSION:  

In this study, we mainly focussed on the variation of the drain 
current as a function of the nanowire diameter and of the 
channel length and we also discussed the device performances 
in terms of off-state current, threshold voltage and parasitic 
short-channel effects.  

We start with the variation of the drain current as a function of 
the nanowire diameter. Figure: 2(e) represents a plot of the 
drain current characteristics as a function of the gate voltage, 
as calculated by MuGFET for two diameters 5 nm and 8 nm. 
Data obtained for both classical and quantum cases are 
plotted. A first remark concerns the off-state current (i.e., 
value of the drain current for VG=0 V). For D=5 nm this 

current is lower than for D=8 nm, whatever the classical 
method or quantum. Similarly, the current in the subthreshold 
regime is lower for the smallest diameter. This is due to the 
so-called “volume inversion” phenomenon which comes into 
play in all multiple-gate devices in the sub threshold regime 
[24]. A second remarkable point, reduction of the drain current 
in the quantum case as compared to the classical case, for both 
nanowire diameters presented here. This is due to the 
existence of a strong “quantum confinement” of carriers leads 
to the reduction of the charge inversion in the channel, 
whereas in classical case this effect is not taken into account. 
Third point to be noted is the difference between the 
calculated drain current both in classical and quantum case.  
This difference is larger for D=5 nm than for D=8 nm, as can 
be seen in Fig. 2(e), particularly in the sub threshold regime. 
When the nanowire is thinned, the carrier confinement is more 
dominant and the inversion charge density in the channel 
reduces. This increases the threshold voltage and leads to a 
significant decrease of the drain current. Figure: 2(f) shows 
the variation of the drain current as a function of gate voltage 
for different channel lengths (for L=40nm & 5nm) and for 
D=5 nm. In this, we can observe that when the channel length 
is reduced(for same D) the off-state current strongly increases 
and the sub threshold slope is much higher than in the case of 
a long channel (L=40 nm), showing a significant degradation 
of the device performances. This is because of huge amount of 
increase in short-channel effects; the gate potential becomes 
less effective. Thus, parasitic electrostatic affects drastically 
increase and lead to this large increase in off-state current and 
sub threshold slope. Such behaviour is observed for both 
classical or quantum cases. Figure- 2(c) shows the variation of 
short channel effect (which is equal to the difference between 
the threshold voltage of the short-channel transistor with L=D 
and the threshold voltage of the long-channel transistor for a 
given diameter D) as a function of nanowire diameter for 
quantum case only. This variation shows that, initially SCS 
increases up to maximum (at D=8 nm), then it starts to 
decrease. This is explained by the fact that the strong quantum 
confinement reduces the short- channel effects. In Figure- 2(d) 
threshold Voltage as function of the nanowire diameter for a 
long-channel and short channel (L=D) using quantum 
mechanical approach is plotted. We note that the threshold 
voltage of the long channel transistor is higher than that of the 
short-channel transistor with L=D. This is an expected result 
because the short channel effects that occur in the transistor 
with L=D greatly reduces the threshold voltage. One can also 
note that when the diameter of the nanowire is reduced, the 
threshold voltage remains constant over a certain range of 
values and then begin to increase with decreasing the 
nanowire diameter this increase is because of the quantum 
confinement of carriers when the diameter is reduced. 
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